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Abstract

With a pretty good-resolution mountain profile, we simulated the underground
muon background at the Daya Bay site. To get the sea-level muon flux parameteri-
zation, a modification to the standard Gaisser’s formula [1] was introduced according
to the world muon data. MUSIC code [2] was used to transport muon through the
mountain rock.

To deploy the simulation, first we generate a statistic sample of sea-level muon
events according to the sea-level muon flux distribution formula; then calculate the
slant depth of muon passing through the mountain using an interpolation method
based on the digitized data of the mountain; finally transport muons through rock
to get underground muon sample, from which we can get results of muon flux, mean
energy, energy distribution and angular distribution.
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1 Digitization of mountain profile of the Daya Bay site

Since we have a 1:5000 topographic map of the Daya Bay area, we can use it to generate
a relevant 3D mountain profile with fairly good resolution. From internet, a kind of data
digitizer software named WinDIG is downloaded to digitize the contour map to get x-y-z
coordinates (x-y demonstrates the location, and z is the altitude.) of sample points. The
total digitized area is 3-kilometer from west to east and 4-kilometer from south to north
with total sample points 0.15million. To save time, at the area far away from the proposed
detector site there are less sample points digitized. Fig. 1 shows a 3D profile of the mountain
generated by ROOT package using the sample points.

Figure 1: 3D profile of the Daya Bay area generated by ROOT.
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2 A parameterization of the sea-level muon flux

Muon flux at sea-level usually can be described by the standard Gaisser’s formula [1]:

dI

dEµd cos θ
= 0.14(

Eµ
GeV

)−2.7

 1

1 + 1.1Eµ cos θ
115GeV

+
0.054

1 + 1.1Eµ cos θ
850GeV

 (1)

In this formula, θ is the polar angle, Eµ is the energy. There are two conditions neglected
in this formula, which are the muon decay and the curvature of the earth. To obey the second
condition, θ < 70◦ is needed. Due to the first reason, the standard Gaisser’s formula cannot
describe the experimental results at low energy well, we modified the formula by adding a
term to the standard formula and doing fit with world muon data to get the parameters.
Function 2 shows the form of this modification.
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where

cos θ∗ =

√√√√(cos θ)2 + P 2
1 + P2(cos θ)P3 + P4(cos θ)P5

1 + P 2
1 + P2 + P4

(3)

is given by Chirkin [3]. In this paper he gave a series of parameters (P1 = 0.102573, P2 =
−0.068287, P3 = 0.958633, P4 = 0.0407253, P5 = 0.817285 ) using the CORSIKA sim-
ulation package and supposing the depth of the atmosphere as 114.8 g/cm2 and 19.3 km.
According to references [4][5], when taking the curvature of the earth into consideration, the
difference between the observed zenith angle on the ground and the zenith angle at muon
production at the top of the atmosphere will give reason to this modification. Fig. 2 demon-
strates this relation.
About the term added to the standard formula, it can give better expression at low energy.
while the energy goes high this term is negligible. To get the constant 3.64 and the index
1.29, we fit the formula with the world muon experimental data. In mathematical view of
point, that formula is much better than the standard formula, which can be found in Fig.
3.

In reference [11], some early experimental results of vertical muon intensity with different
depth of material that muon transport through in standard rock can be found. According
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Figure 2: Relation of the observed zenith angle of muons to the zenith angle at production at
the top of the atmosphere. R is the radius of the earth. [4][5]
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Figure 3: The best-fit result to the experimental data. From this figure, the modified formula
could fairly match the experimental data in different zenith angles with energy higher than
several tens GeV . The data are quoted from [6] [7] [8] [9] [10].
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to the paper, depth of these entire data except the latest result with the lowest overburden
is the depth below top of the atmosphere. So the consistency between the simulated data
and the experimental data should be better than that Fig. 4 tells.
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Figure 4: Average vertical muon intensity versus depth in standard rock. Black points are
experimental data from reference [11]; red solid triangles stand for the simulated results
using the modified formula; green hollow triangles demonstrate the simulated results using
the standard Gaisser’s formula.

3 A random variable generator

According to the simulation method, we need random variable generator to generate sea-
level muon events according to the sea-level muon flux distribution formula. Next algorithm
named discrete approaching is used:
1. Divide the energy range and the range of angle into equal bins;
2. Calculate the integral of each bin according to the formula;
3. Add the bins one by one together to get a 1D cumulative probability distribution series;
4. Generate a evenly random number in(0, 1), compare this number with the above series
(need normalization) to find a right bin with nearest bin boundary;
5. Use another random number in (0, 1) to pick up a (E, theta) in this right bin.
Using double-precision variables to calculate the integral of each bin, this algorithm can
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generate correct random numbers according to a function like the standard Gaisser’s formula;
Fig. 5 shows the consistency between the distribution of the generated variables and the
formula.
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Figure 5: Distribution of muon energy generated with 2D random numbers based on the
standard Gaisser’s formula. Red line is the fit of the distribution using the exact integral
distribution function.

4 A method to do interpolation

The basic idea of this interpolation can be described as that: supposing two points and
their function values, if they are closely located their values are expected to be close, if they
are distant it is probable that their values are quite different. In estimation of a value at
a certain point, we should put more weight on function values of near sample points than
those of distant points. We got the digitized data of the mountain in xyz coordinate system.
But when calculating the slant depth through the mountain, it is easier to put the proposed
underground site at the origin of the coordinate system and use polar coordinate system.
We think about a kind of weighted average to deal with this problem. A formula like this
is used:
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R(θ0, φ0) =

∑
ωi(δθ)ri(θ, φ)∑

ωi(δθ)
(4)

where, R and r are the distance from the underground site to the surface. δθ is the inclination
of the direction (θ, φ) to the direction (θ0, φ0) ; ω(δθ) is the weight function of the sample
points;

∑
stand for the sum of the sample points in adjacent region. In the polar coordinate

system there can be more than one r values in certain direction (θ, φ). By using a scanning
algorithm, we can conveniently find the point of intersection:

R of the sample points [ scan steplength 10m ] ( m )
0 200 400 600 800 1000 1200 1400 1600 1800

R of the sample points [ scan steplength 10m ] ( m )
0 200 400 600 800 1000 1200 1400 1600 1800

R
 w

ei
gh

ed
 a

ve
ra

ge
 ( 

m
 )

400

600

800

1000

1200

1400

const =  0.1 

const =  0.3 

const =  0.5 

const =  0.8 

θδ× average(R) × - const  ) = E θδw(

Figure 6: Calculate weighted average with
different group of sample points; several
plateau emerges.

Figure 7: Given const=0.8; there could
be a point of intersection in each PEAK
location.

1, the sample points in adjacent region can be divided to a series of sub-groups according to
the r value of the sample points;
2, calculate weighted average with different group of sample points when r < R;
3, increasing r step by step, scanning along the r direction to find points of intersection, one
can get Fig 6.
4, divide the weighted average by the average of r step by step. the plot Fig 7 shows the
result.

If we choose the weight function such as that shown in Fig 6, using the above algorithm,
the intersections of the muon track with the mountain profile can be obtained. However,
there could be fake intersections found through this method. One needs to search around
this intersection to make sure that there are sample points around, which means a real
intersection. Fig 8 shows the comparison of the result using ROOT interpolation method
in the xyz coordinate system with that deploying above weighted average algorithm in the
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Figure 8: Comparison of 2D mountain profile from the Daya Bay near site with azimuthal
angle of 115◦.

polar coordinate system. We can see fairly good result through those two methods, but the
weighted average method can save much CPU time.

5 Results of underground muon simulation

The lower edge of sampling energy of the surface muon is determined by the formula in
reference [12]:

Emin
◦ = ε

(
e
X
ξ − 1

)
(5)

where X is determined by the shortest track-length for muons in rock, ξ ≈ 2.5×105 g/cm2 ε ∼
500 GeV . The next results is calculated under the condition that the range of muon zenith
angle is chosen from 0◦ to 75◦. For the zenith angle greater than 75◦, because of geomag-
netic field effect [13], situation is much more complex to parameterize the muon spectrum.
However, further calculation shows about 5% more in muon flux and about 5% higher in
muon average energy when extrapolating the modified Gaisser’s formula to full zenith angle
range.
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Figure 10: θ distribution.

For the final determined detector sites, we did the simulation and obtained the results
shown in table 1. Fig 9 shows the energy distribution of underground muons at the Daya
near site and at the far site. Fig 10 presents the θ distribution of the incoming muons at
four sites, and the muon φ angle distribution is shown in fig 11.
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Figure 11: φ distribution.

We also did the same simulations at various locations through out the Daya bay area to
show the real impact of the mountain profile to the muon flux, which was an input to the
sensitivity study. Fig 12, 13, 14, 15 show a part of those results. In those plots, there is
three numbers at every location. They are altitude (m), muon Flux (Hz/m2) and average
energy (GeV ) respectively. The background picture is the scattering-point contour-line map
of the relevant area. Stars in the plots stand for the location of the reactor cores, and the
red line is the perpendicular bisector of the corresponding group of reactor cores.
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Table 1: Results of underground muon simulation. Altitude in this table is given by the
original map which was used to do mountain digitization.

sites altitude (m) muon flux (Hz/m2) average energy (GeV )
Daya Bay near 98 1.2 55.3
LingAo near 112 0.70 61.4
Middle 208 0.17 98.3
Far 356 0.041 140.3
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Figure 12: Daya Bay near site scenario.
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Figure 13: LingAo near site scenario.
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Figure 14: Middle site scenario.
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Figure 15: Far site scenario.
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6 Summary

This note describes the method we used to simulate the underground muon at the Daya
Bay site. With the real mountain profile, we obtained muon flux and the average energy
at various underground locations in the Daya Bay area, which will do good to the baseline
design and detector design.
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